Scalable Composition, Evolution and Verification
Through Feature-Oriented Programming

Shriram Krishnamurthi Kathi Fisler Don Batory
Brown University Worcester Polytechnic Institute University of Texasat Austin
sk@s. br own. edu kfisler@s.wi.edu bat ory@s. ut exas. edu

(contact author)

October 30, 2001

Abstract

A growing trend in software construction advocates a change in system modularity. While traditional
modules permit easy re-configuration of a system to support different actors, these new modules encap-
sulate features. These modules better match the language of requirements. As aresult, programmersfind
it easier to design, compose and evolve systems. We have demonstrated, through theory and experiment,
that these benefits extend to software verification also. This program now regquireswork on programming
language and environment design and implementation, type systems, interface languages, and more re-
fined verification techniques. Our long-term goal is to build on these successes to carry feature-oriented
system construction to maturity, through collaboration and cross-pollination between software engineer-
ing, programming languages and formal verification.



1 Introduction

Effective methodol ogies for constructing and evolving large-scal e software systems remain the holy grail of software
engineering. Ideally, an effective construction methodology should support reuse, configurability, evolution, and vali-
dation techniquesfor checking requirements. Attractiveideas along these linesinclude components (for encapsulating
reusabl e code fragments), product-line architectures (for building families of systems from components), formal anal-
yses (for determining properties of components), and predictable assembly (for deriving properties of a system from
properties of its components). While these techniques have identified key pieces of the software construction puzzle,
none of these is inherently sufficient to address the numerous software construction problems that beg resolution.
Furthermore, integrating these pieces is often difficult because they don't quite align in their assumptions, style and
approaches.

A fundamental problem with many current approachesisthat they view systemsfrom the perspective of producers,
rather than consumers. Software consumers tend to specify requirements primarily in terms of features; the actorsin
the code, in contrast, often reflect internal implementation details. (For example, consider a GUI toolkit: users care
about editing, searchability and copying features, but toolkits export classes pertaining to windows, panels, canvases
and so forth.) Recent research in software construction thus increasingly reflects acommon theme: we need to realign
our modules around features rather than actors. This shift in perspective must be informed by input from at least
three communities: software engineering, which tackles mapping user needs to concrete requirements; programming
languages, which addresses the mapping of requirements to code; and formal verification, which provides validation
support at each stage.

Feature-oriented models suggest a world in which we select modules that implement the features that a system
needs, then compose those modulesto build the system. Research into feature-oriented modules demonstratesthat they
enable reuse, evolution, maintenance, product line construction, configuration, and validation better than conventional
modules [2, 10, 16]. This evidence strongly suggests that feature-oriented modules will form a cornerstore of future
software development technologies. A shift to feature-oriented modules, however, has far-reaching effectsin how we
design, view, and use modules. These differencesform the focus of our research agenda.

This paper argues for feature-oriented modules as a foundation for scalable, robust, software construction. We
present an overview of feature-oriented modules, survey their technical characteristics and established benefits, and
outline the open problems that we must solve in order to build a software construction methodol ogy around them.

2 Feature-Oriented Modules: An Overview

Traditional modul esencapsul ate participants (or actors) and contain the code that the actor needsto implement services
(or features) of the system. Feature-oriented modules, in contrast, encompass all of the code needed to implement a
singlefeature (or closely related set of features) acrossthe actorsin adesign. In other words, feature-oriented modules
cross-cut actors. Figure 1 depicts the difference between actor-oriented and feature-oriented modul es.

By effecting a change in focus from producers to consumers, feature-oriented modules offer several advantages
over actor-orientation:

e They makeit easier for programmersto satisfy requirements, because requirements primarily describe features.
Actor-oriented modular decompositions are difficult to adapt to changing requirements, and don't easily yield
product lines. As aresult, they are often hard for end-usersto understand and use.

e They simplify configuration, evolution, and maintenance because these activities are often driven by user de-
mands. Consider a simulator for military missions. The simulator could contain personnel and weapons as
actors, and missions for firing on targets as features. In order to be useful for training military units for arange
of missions, the simulator would need to be easily configurable along many axes. For example, consider a case
where a division needs to train to use a particular set of weaponsin a particular terrain. A simulator exists for
the right terrain, but it includes some inapplicable weapons. How hard would be it be to remove the missions
(communication protocol and firing decisions) for those weapons?

With feature-oriented modules, each module encapsulates code for a mission centered around a particular
weapon under a certain set of conditions. To remove the weapons, the programmer removes the modules for
those weapons from the design and composes the simulator afresh. With an actor-oriented modularization, in
contrast, a programmer would need to edit each actor involved in negotiating for or using those weapons. As



‘ ()4> D %HOD featurel

T3
CQHQ feature2

Figure 1: Two modularizations of the same code: actor-oriented (lIeft) and feature-oriented (right). This example
depicts code as state machines to simplify the illustration.

actor-oriented code usually co-mingles code for different features, this task would be time-intensive and error-
prone. In many cases, code modification is not even possible; for example, a programmer may be trying to
extend proprietary code that is only available as object code.

e They simplify formal validation. Ideally, we should be able to exploit the modular decomposition to verify
properties of programs. Reasoning about properties modularly is extremely attractive because some forms of
formal verification suffer from a problem known as state-explosion: the models generated during verification
are often too large to be verified. In this case, verification engineers must decompose the verification problem
into smaller (hopefully tractable) problems. In the process, engineers attempt to isolate the portion of the model
that affects the property.

Since properties arise from reguirements, which in turn correspond closely to features, a feature-oriented de-
composition makesit easy to isolate the relevant modules. With actor-oriented modules, in contrast, the feature-
oriented property cross-cuts the actors. The verification engineer often must decompose the property statement
itself into statements about the individual actors. Experience shows this step to be difficult, if not impossible.
Feature-oriented modules therefore support a more natural modular verification methodol ogy.

Many researchers have built systems using a feature-oriented decomposition for diverse domains; a brief sample
includes protocol stacks [6, 21], testbench generators [14] and verification tools [20]. Some researchers have ab-
stracted these implementations into feature-oriented architectures, including refinements[4], collaboration filters [5],
units [10], aspects [15], collaborations [17], hyper-slices [18] and others. Not all of these approaches, however, view
their cross-cutting fragments as modules in the theoretical sense (with interfaces and composition semantics).

We view the much-heral ded notion of aspect-oriented programming [15], for instance, as raising an important is-
sue of system decomposition. The state of current aspect technology, however, falls short in various respects. Aspects
suffer from several problems that inhibit practical deployment: they lack modular compilation, modular verifica-
tion and composition validation techniques. Nevertheless, many “aspect-oriented” problems fit extremely well in a
feature-oriented framework. We therefore view feature-oriented modules as providing much of the expressive power
of aspects, with just enough restriction to enable the other activities of the software engineering enterprise.

The Structure of Feature-Oriented M odules

Typically, several actors collaborate to implement a feature. If a module encapsulates all of the code pertaining to a
single feature, a feature-oriented module must contain code fragments for several actors (as shown in Figure 1). This
affects both the content and the interfaces of modules.

In Java, for instance, a package encapsulates fragments of classes: a class extension within a package may extend
a class outside the package. The package, however, explicitly names the other packages whose contents it imports.
This results in a completely determined class hierarchy. Packages, therefore, primarily organize code, and offer no
flexibility of reconfiguration.

Feature-oriented modules also encapsulate class extensions. The modules differ, however, in stating only the
interfaces of their imports. A (potential) third-party is responsible for composing the modules by satisfying module
imports with other modules that implement the desired interfaces. This external linkage property forces programmers
to make meaningful modulesthat a third-party can sensibly combine.

The external linkage of modulestricklesdown to their contents. Whereasin Java, the superclass of aclassextension
is easy to determine (by following the module€'simport), in a feature-oriented decomposition, the superclass won't be



known until linkage. Classes with parameterized super-classes are called mixins;* their compilation techniques, type
theory and so forth are open topics of research [7, 13, 19, 22].

What about constraints between the modules? Features in a system are rarely orthogonal. In atelephony system,
for example, one cannot have conference calls without the ability for multi-party connections. Some systems require
the opposite situation, where one feature disallows another; for example, we cannot easily add afeature for computing
undirected spanning trees to a graph with a directed edges feature. This enriches the interfaces of feature-oriented
modules: they must specify design rules that govern when a feature can be integrated into a system.

Richer modular analyses demand even more interface information. In order to reason about a feature in isolation
from the rest of the system, techniques such as model checking [8] must determine exactly how the actors start
executing a feature. For example, do the actors begin to execute the feature simultaneously, or does one actor start
the feature and then convince the othersto follow? Module interfaces must provide this form of feature coordination
information.

3 Prior Resaults

Our belief in the effectiveness of feature-oriented modules stems from extensive prior experience. We have applied
them to constructing monoalithic software and software product lines for military command-and-control simulators[3],
databases [4], programming environments [9], verification tools [12], and other systems. Our models of feature-
oriented design have emerged from these experiences. Batory and his colleagues have implemented support for ex-
pressing feature-oriented designs directly in both Java [1] and C++ [19].

We have aso implemented lightweight and heavyweight formal methods techniques for these modules. Batory
and Geraci introduced and provided tool support for design rule checking [1]. Flatt, Krishnamurthi and Felleisen have
developed a type system and compilation methodology for a mixin-centric adaptation of Java[13]. Fisler and Krish-
namurthi present a technique for model checking feature-oriented modules [11]. They show that feature-orientation
promises to eliminate some of the property decomposition and circularity problems that dog existing modular verifi-
cation techniques. We have since implemented a model checker for these modules, and applied it to a portion of the
military command-and-control simulator to validate our claims; we have even found feature-oriented modules natu-
rally control state space growth in other ways as well [16]. Our prior papers provide extensive overviews of results by
other researchersin this area.

4 Objectiveand Vision

Our objective is to carry a feature-oriented design methodology to maturity. We believe this will make it easier
for programmersto satisfy requirements, help them compose software more effectively, provide better guarantees of
module and system behavior, and adapt better to requirement and code evolution.

To realize this vision, we anticipate solving several technical problems:

¢ We need to devel op programming language support for thetypes, interfaces and linking mechanismsthat feature-
orientation requires.

e We must design type systems that capture design-rule checking; this raises interesting problemsin representing
negative information.

¢ We must refine and expand the content of interfaces to support more validation techniques.

e We need to expand our stable of verification techniques, model checkingis good for verifying control properties,
but less suitable for data-intensive properties.

e We also need to consider how to manage requirement evol ution.
e Finally, we need to build integrated programming environments that support all of these techniques.

We believe, however, that these problems are tractable, and that solving them will enable us to build on the promising
foundation that feature-oriented modules provide for large-scal e software construction.

INote that these are completely unrelated to the Common Lisp notion of mixins, which are a pattern of programming with multiple-inheritance.



References

(1]

(2]

(3]

(4]

(9]

(6]

(7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

D. Batory and B. J. Geraci. Composition validation and subjectivity in GenVoca generators. |EEE Transactions on Software
Engineering, pages 67-82, Feb. 1997.

D. Batory, C. Johnson, B. MacDonald, and D. von Heeder. Achieving extensibility through product-lines and domain-specific
languages: A case study. In International Conference on Software Reuse, June 2000.

D. Batory, C. Johnson, B. MacDonald, and D. von Heeder. FSATS: An extensible C4l simulator for army fire support.
In Workshop on Product Lines for Command-and-Control Ground Systems at the First International Software Product Line
Conference (SPLC1), August 2000.

D. Batory and S. O’ Malley. The design and implementation of hierarchical software systems with reusable components. ACM
Transactions on Software Engineering and Methodology, 1(4):355-398, Oct. 1992.

L. Bergmans and M. Aksit. Composing crosscutting concerns using composition filters. Communications of the ACM, Oct.
2001.

E. Biagioni, R. Harper, P. Lee, and B. G. Milnes. Signatures for a network protocol stack: A systems application of Standard
ML. In ACM Symposium on Lisp and Functional Programming, 1994.

G. Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheritance. PhD thesis, University of
Utah, Mar. 1992.

E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler, and M. Felleisen. DrScheme: A programming
environment for Scheme. Journal of Functional Programming, 2001. To appear.

R. B. Findler and M. Flatt. Modular object-oriented programming with units and mixins. In ACM SIGPLAN International
Conference on Functional Programming, pages 94-104, 1998.

K. Fider and S. Krishnamurthi. Modular verification of collaboration-based software designs. In Symposium on the Founda-
tions of Software Engineering, Sept. 2001.

K. Fider, S. Krishnamurthi, and K. E. Gray. Implementing extensible theorem provers. In International Conference on
Theorem Proving in Higher-Order Logic: Emerging Trends, Research Report, INRIA Sophia Antipolis, September 1999.

M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In ACM SSGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 171-183, January 1998.

Y. Hollander, M. Morley, and A. Noy. The e language: A fresh separation of concerns. In Proceedings of TOOLS Europe,
Mar. 2001.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented programming.
In European Conference on Object-Oriented Programming, June 1997.

H. Li, K. Fisler, and S. Krishnamurthi. The influence of software module systems on modular verification. In review, Oct.
2002.

K. Lieberherr, D. Lorenz, and M. Mezini. Programming with aspectual components. Technical Report NU-CCS-99-01,
College of Computer Science, Northeastern University, Mar. 1999.

H. Ossher and P. Tarr. Multi-dimensional separation of concerns in hyperspace. Technical Report RC 21452(96717), IBM,
Apr. 1999.

Y. Smaragdakis and D. Batory. Implementing layered designs and mixin layers. In European Conference on Object-Oriented
Programming, pages 550-570, July 1998.

K. Stirewalt and L. Dillon. A component-based approach to building formal-analysis tools. In International Conference on
Software Engineering, 2001.

R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and D. Karr. Building adaptive systems using Ensemble. Technical
Report 97-1638, Department of Computer Science, Cornell University, July 1997.

M. VanHilst and D. Notkin. Using role components to implement collaboration-based designs. In ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages & Applications, 1996.



